Pictionary, the popular sketch-based guessing game, provides an opportunity to analyze shared goal cooperative game play in restricted communication settings. However, some players occasionally draw atypical sketch content. While such content is occasionally relevant in the game context, it sometimes represents a rule violation and impairs the game experience. To address such situations in a timely and scalable manner, we introduce DrawMon, a novel distributed framework for automatic detection of atypical sketch content in concurrently occurring Pictionary game sessions. We build specialized online interfaces to collect game session data and annotate atypical sketch content, resulting in AtyPict, the first ever atypical sketch content dataset. We use AtyPict to train CanvasNet, a deep neural atypical content detection network. We utilize CanvasNet as a core component of DrawMon. Our analysis of post deployment game session data indicates DrawMon's effectiveness for scalable monitoring and atypical sketch content detection. Beyond Pictionary, our contributions also serve as a design guide for customized atypical content response systems involving shared and interactive whiteboards. Code and datasets are available at https://drawm0n.github.io.
translated by 谷歌翻译
``神经切线内核'(NTK)(Jacot等人,2018年)及其经验变体被提议作为捕获真实神经网络某些行为的代理。在这项工作中,我们通过缩放定律的镜头研究NTK,并证明它们无法解释神经网络概括的重要方面。特别是,我们证明了现实的设置,其中有限宽度的神经网络具有与初始化时相应的经验和无限NTK相比,具有更好的数据缩放指数。这揭示了真实网络和NTK之间的更根本差异,仅仅是几个百分点的测试准确性。此外,我们表明,即使允许经验NTK在恒定数量的样本上进行预训练,也不会赶上神经网络缩放。最后,我们表明,经验NTK在整个培训的大部分培训中都在不断发展,与先前的工作相反,这表明它在经过几个时代的培训后稳定。总的来说,我们的工作确立了NTK方法在理解自然数据集对真实网络的概括方面的具体限制。
translated by 谷歌翻译
对象的嵌入,低维矢量表示,在构建现代机器学习系统中至关重要。在工业环境中,通常有一个嵌入式团队训练嵌入模型来解决预期的任务(例如,产品建议)。然后,消费者团队广泛消耗了生产的嵌入,以解决其意外任务(例如,欺诈检测)。但是,随着嵌入模型的更新和重新培训以提高预期任务的性能,新生成的嵌入不再与现有的消费者模型兼容。这意味着嵌入的历史版本永远无法退休,或者所有消费者团队都必须重新训练模型,以使其与最新版本的嵌入式兼容,这两者在实践中都是非常昂贵的。在这里,我们研究了嵌入版本更新及其向后兼容性的问题。我们正式化了嵌入团队继续更新嵌入式版本的目标,而消费者团队不必重新训练他们的模型。我们开发了一种基于向后兼容的嵌入式学习的解决方案,该解决方案允许嵌入模型版本经常更新,同时还允许将最新版本的嵌入式版本快速转换为IT的任何向后兼容的历史版本,以免消费者团队不使用消费者团队。必须重新训练他们的模型。在我们的框架下,我们探索六种方法,并在现实世界中的推荐系统应用程序上系统地评估它们。我们表明,即使在多个模型版本更新之后,我们称为BC-Aligner的最佳方法也可以与现有意外任务保持向后兼容性。同时,BC-Aligner实现了预期的任务性能,类似于仅针对预期任务进行优化的嵌入模型。
translated by 谷歌翻译
Recently, online social media has become a primary source for new information and misinformation or rumours. In the absence of an automatic rumour detection system the propagation of rumours has increased manifold leading to serious societal damages. In this work, we propose a novel method for building automatic rumour detection system by focusing on oversampling to alleviating the fundamental challenges of class imbalance in rumour detection task. Our oversampling method relies on contextualised data augmentation to generate synthetic samples for underrepresented classes in the dataset. The key idea exploits selection of tweets in a thread for augmentation which can be achieved by introducing a non-random selection criteria to focus the augmentation process on relevant tweets. Furthermore, we propose two graph neural networks(GNN) to model non-linear conversations on a thread. To enhance the tweet representations in our method we employed a custom feature selection technique based on state-of-the-art BERTweet model. Experiments of three publicly available datasets confirm that 1) our GNN models outperform the the current state-of-the-art classifiers by more than 20%(F1-score); 2) our oversampling technique increases the model performance by more than 9%;(F1-score) 3) focusing on relevant tweets for data augmentation via non-random selection criteria can further improve the results; and 4) our method has superior capabilities to detect rumours at very early stage.
translated by 谷歌翻译
Language models have been shown to perform better with an increase in scale on a wide variety of tasks via the in-context learning paradigm. In this paper, we investigate the hypothesis that the ability of a large language model to in-context learn-perform a task is not uniformly spread across all of its underlying components. Using a 66 billion parameter language model (OPT-66B) across a diverse set of 14 downstream tasks, we find this is indeed the case: $\sim$70% of attention heads and $\sim$20% of feed forward networks can be removed with minimal decline in task performance. We find substantial overlap in the set of attention heads (un)important for in-context learning across tasks and number of in-context examples. We also address our hypothesis through a task-agnostic lens, finding that a small set of attention heads in OPT-66B score highly on their ability to perform primitive induction operations associated with in-context learning, namely, prefix matching and copying. These induction heads overlap with task-specific important heads, suggesting that induction heads are among the heads capable of more sophisticated behaviors associated with in-context learning. Overall, our study provides several insights that indicate large language models may be under-trained to perform in-context learning and opens up questions on how to pre-train language models to more effectively perform in-context learning.
translated by 谷歌翻译
We study algorithms for detecting and including glass objects in an optimization-based Simultaneous Localization and Mapping (SLAM) algorithm in this work. When LiDAR data is the primary exteroceptive sensory input, glass objects are not correctly registered. This occurs as the incident light primarily passes through the glass objects or reflects away from the source, resulting in inaccurate range measurements for glass surfaces. Consequently, the localization and mapping performance is impacted, thereby rendering navigation in such environments unreliable. Optimization-based SLAM solutions, which are also referred to as Graph SLAM, are widely regarded as state of the art. In this paper, we utilize a simple and computationally inexpensive glass detection scheme for detecting glass objects and present the methodology to incorporate the identified objects into the occupancy grid maintained by such an algorithm (Google Cartographer). We develop both local (submap level) and global algorithms for achieving the objective mentioned above and compare the maps produced by our method with those produced by an existing algorithm that utilizes particle filter based SLAM.
translated by 谷歌翻译
$ $With recent advances in CNNs, exceptional improvements have been made in semantic segmentation of high resolution images in terms of accuracy and latency. However, challenges still remain in detecting objects in crowded scenes, large scale variations, partial occlusion, and distortions, while still maintaining mobility and latency. We introduce a fast and efficient convolutional neural network, ASBU-Net, for semantic segmentation of high resolution images that addresses these problems and uses no novelty layers for ease of quantization and embedded hardware support. ASBU-Net is based on a new feature extraction module, atrous space bender layer (ASBL), which is efficient in terms of computation and memory. The ASB layers form a building block that is used to make ASBNet. Since this network does not use any special layers it can be easily implemented, quantized and deployed on FPGAs and other hardware with limited memory. We present experiments on resource and accuracy trade-offs and show strong performance compared to other popular models.
translated by 谷歌翻译
Prompting large language models has enabled significant recent progress in multi-step reasoning over text. However, when applied to text generation from semi-structured data (e.g., graphs or tables), these methods typically suffer from low semantic coverage, hallucination, and logical inconsistency. We propose MURMUR, a neuro-symbolic modular approach to text generation from semi-structured data with multi-step reasoning. MURMUR is a best-first search method that generates reasoning paths using: (1) neural and symbolic modules with specific linguistic and logical skills, (2) a grammar whose production rules define valid compositions of modules, and (3) value functions that assess the quality of each reasoning step. We conduct experiments on two diverse data-to-text generation tasks like WebNLG and LogicNLG. These tasks differ in their data representations (graphs and tables) and span multiple linguistic and logical skills. MURMUR obtains significant improvements over recent few-shot baselines like direct prompting and chain-of-thought prompting, while also achieving comparable performance to fine-tuned GPT-2 on out-of-domain data. Moreover, human evaluation shows that MURMUR generates highly faithful and correct reasoning paths that lead to 26% more logically consistent summaries on LogicNLG, compared to direct prompting.
translated by 谷歌翻译
Vision transformers (ViTs) have achieved impressive results on various computer vision tasks in the last several years. In this work, we study the capability of frozen ViTs, pretrained only on visual data, to generalize to audio-visual data without finetuning any of its original parameters. To do so, we propose a latent audio-visual hybrid (LAVISH) adapter that adapts pretrained ViTs to audio-visual tasks by injecting a small number of trainable parameters into every layer of a frozen ViT. To efficiently fuse visual and audio cues, our LAVISH adapter uses a small set of latent tokens, which form an attention bottleneck, thus, eliminating the quadratic cost of standard cross-attention. Compared to the existing modality-specific audio-visual methods, our approach achieves competitive or even better performance on various audio-visual tasks while using fewer tunable parameters and without relying on costly audio pretraining or external audio encoders. Our code is available at https://genjib.github.io/project_page/LAVISH/
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译